课堂有秩序的关键在于教师的教案准备是否到位,编写教案是教师认真思考教学内容、方法和手段的重要方式,淘范文小编今天就为您带来了解一元二次方程教案5篇,相信一定会对你有所帮助。
解一元二次方程教案篇1
复习目标:
1、能说出一元二次方程及其相关概念。
2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。
复习重难点:一元二次方程的解法
教学过程
一、情景导入
前面我们复习了一元一次方程与二元一次方程组的解法,大家掌握得很不错,请同学解方程x(x-1)=1,(学生略作思考后,示意不会做)忘了吧?看来好多学生都已经忘了如何解一元二次方程呢?那么这节课我们就一起来复习一元二次方程的解法(板书课题)
二、复习指导(学生按照复习提纲解决问题,师做简单的板书准备后,巡视指导,特别要注意帮助有困难的同学,了解学生的情况,为展示归纳做准备。)
复习提纲
1.-元二次方程的定义:只含有_______叫做一元二次方程。
2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,c叫做_______项。
3.一元二次方程的解法:
(1)用直接开平方法解方程(2x+1)2=9
形如x2=p(p≥0)的方程的根为________。
(2)用配方法解方程x2+2x=3
用配方法解方程步骤: , , , 。
(3)用求根公式法解方程x2-3x-5=0 ,x2-3x+5=0。
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=________,根x= 。
(1)当△>0时,方程有两个_______的实数根。
(2)当△=0时,方程有两个_______的实数根。
(3)当△
三、展示归纳
1、教师抽有困难的学生逐题汇报复习结果,学生说教师板书。
2、教师发动全班学生进行评价,补充,完善。
3、教师画龙点睛的强调。
四、变式练习(1、2、4题让学生说出理由,3题让学生观察方程的特点可发现:(1)可用直接开平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x-3),故可用因式分解法。)
1、判断下列哪些方程是一元二次方程?
(1)4x2-16x+15=0 (2) 2x2-3=0 (3)ax2+bx+c=0
2、请将方程(x+1)(2-x)=1化为一般形式_______。
3、解下列方程:
(1) (x-3)2-9=0; (2) x2-2x=5;
(3) x2-4x+2=0; (4) 2(x-3)=3x(x-3)。
4、不解方程,判断下列方程根的情况。
(1)2x2-5x-3=0 (2)x2+6x+9=0 (3)x2-4x+5=0
五、课堂总结
请谈谈本节课的收获与困惑。(学生自主小结归纳,将本章知识内化为自己的东西,并提高归纳小结的能力。)
六、布置作业
解一元二次方程教案篇2
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的`关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1 两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一) 设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二) 设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。 第 1 2 页
解一元二次方程教案篇3
教学内容: 12.1 用公式解一元二次方程(一)
教学目标:
知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.,数学教案-用公式法解一元二次方程。
教学重、难点与关键:
重点:一元二次方程的意义及一般形式.
难点:正确识别一般式中的“项”及“系数”。
教辅工具:
教学程序设计:
程序
教师活动
学生活动
备注
创设
问题
情景
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
学生看投影并思考问题
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
探
究
新
知
1
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
解一元二次方程教案篇4
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
问题(2)如图,如果 ,那么点c叫做线段ab的黄金分割点.
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材p32 练习1、2
四、应用拓展
例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.
证明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+1>0,即(-4)2+1≠0
∴不论取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
解一元二次方程教案篇5
一、教材
1. 教学内容:
本节课是北师大版九年级上第二章第五小节第一课时。内容是一元二次方程在几何和实际生活中的应用。
2. 本节课在教材中所处的地位和作用:
? 一元二次方程》 这一章是前面所学知识的继续和发展,尤其是一元一次方程、二元一次方程(组)等内容的深入和发展,是方程知识的综合运用。学好这部分知识,为九下学习一元二次函数知识打下扎实的基础,是后继学习的前提。而本节内容是一元二次方程的实际应用,是一元二次方程的最后部分。当然,尽管是最后一部分内容,但在本章的2~4节探索医院二次方程解法的过程中已经涉及到了一些关于一元二次方程的应用题,因此学生对此并不陌生,已经积累了一定的经验。
3. 教学目标
(1)经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤。
(2)通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。
4. 教材的重点:掌握运用方程解决实际问题的方法。
5. 教材的难点:建立方程模型。
二、教法:
选取现实生活中的题材,调动兴趣,探索、解决问题,讲练结合。
三、学法:
通过阅读细化问题、逐步解决问题
四、教学过程:
(一)导入新课,隐射教学目标
1. 观察图片: 古埃及胡夫金字塔,古希腊巴特农神庙,上海东方明珠电视塔,它们都是古今中外历史上著名的建筑,在这些建筑的设计上都运用到了数学一个很奇妙的知识——黄金分割。
2. 释疑: 你想知道黄金分割中的黄金比是怎样求出来的吗?如图,点c把线段ab分成两条线段ac和bc,如果_______________那么称线段ab被点c黄金分割,点c叫做线段ab的黄金分割点,ac与ab的比称为黄金比(0.618)。黄金比为什么等于0.618 ?方程能帮助我们解决这个问题吗? 让我们一起来做一做。 解:由=,得ac2=ab·cb 设ab=1, ac=x ,则cb=1-x ,代入上式, x2=1×(1-x) 即:x2+x-1=0 解这个方程,得 x1= , x2=(不合题意,舍去) 所以:黄金比=≈0.618
(二) 一元二次方程还能解决什么问题? 例1:如图,某海军基地位于a处,在其正南方向200海里处有一目标b,在b的正东方向200海里处有一重要目标c.小岛d位于ac的中点,岛上有一补给码头;小岛f位于bc上且恰好处于小岛d的正南方向。一艘军舰沿a出发,经b到c匀速巡航,一艘补给船同时从d出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。 (1)小岛d和小岛f相距多少海里?
(2)已知军舰的速度是补给船的2倍,军舰在 由b到c的途中与补给船相遇于e处,那么相 遇时补给船航行了多少海里?(结果精确到0.1海里) 『分析』(设置一些小问题):
①你能在图中找到表示小岛f的点吗?在本题中, 实际要求的是什么?
②这是一个路程问题,路程=____________×___________。 在本题中,从出发到相遇,军舰、补给船的航线路线分别是图中的哪些线段?两艘船的时间、速度、路程已知吗?两艘船的时间、速度、路程各有什么关系?
③你能用含有一个未知数的代数式来表示军舰和补给船各自的路程吗?
④你能借助图中的`特殊图形解决本题的两个问题吗? 解:
(1)连接df,则df⊥bc, ∵ab⊥bc,ab=bc=200海里 ∴ac=ab=200海里,∠c=45° ∴cd=ac=100海里 df=cf,df=cd ∴df=cf=cd=×100=100海里 所以,小岛d和小岛f相距100海里。
(2)设相遇时补给船航行了x海里,那么de=x海里,ab+be=2x海里 ef=ab+bc―(ab+be)―cf=(300―2x)海里 在rt△def中,根据勾股定理可得方程:x2=1002+(300-2x)2 整理得, 3x2-1200x+100000=0 解这个方程,得:x1=200-≈118.4 x2=200+(不合题意,舍去) 所以,相遇时,补给船大约航行了118.4 海里。 这部分教学设计意图: 通过前面的学习,学生对一元二次方程在实际问题中的应用已经有了一定的了解,在本课的学习中,我们联系实际选取例题,通过这个例题详细展示了应用题的分析方法、解题过程,要求学生能用自己的语言归纳解题的一般步骤,从而培养学生的阅读能力、建立方程模型解决实际问题的能力。
(三)练一练 例2:如图,在rt△abc中,∠c=90°,点p,q同时由a,b两点出发,分别沿ac,bc方向向点c匀速移动,它们的速度都是1/s.几秒后△pcq的面积是rt△acb面积的一半? 『分析』(设置一些小问题):
①本题同样涉及的是行程问题,在本题中,时间、速度、 路程这三个量哪些是已知的?哪些是未知的?通过假设 未知数,你能将各未知量表示出来吗?未知量和已知之 间有什么关系?未知量与未知量之间有什么关系?
②点p、q的路程在右图中分别对应哪些线段?在右图中 你还能表示出哪些线段的长?问题中涉及的两个三角形的 面积分别该如何表示? 解:设x秒后,△pcd的面积是rt△abc的一半, 由题意得: 整理得:
6.答: 答案也必需是完事的语句。 列方程解应用题的关键是:找等量关系,本题中找等量关系的方法是“图示法”,常用的方法还有“列表法”等。