初中数学几何知识点总结 篇1
1、三角形、平行四边形和梯形的计算
用到的定理主要有三角形全等定理,中位线定理,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。关于梯形中线段计算主要依据梯形中位线定理及等腰梯形、直角梯形的性质定理等。
2、有关圆的线段计算的主要依据
⑴、切线长定理
⑵、圆切线的性质定理。
⑶、垂径定理。
⑷、圆外切四边形两组对边的和相等。
⑸、两圆外切时圆心距等于两圆半径之和,两圆内切时圆心距等于两半径之差。
3、直角三角形边的计算
直角三角形边长的计算应用最广,其理论依据主要是勾股定理和特殊角三角形的`性质及锐角三角函数等。
4、成比例线段长度的求法
⑴、平行线分线段成比例定理;
⑵、相似形对应线段的比等于相似比;
⑶、射影定理;
⑷、相交弦定理及推论,切割线定理及推论;
⑸、正多边形的边和其他线段计算转化为特殊三角形。
初中数学几何知识点总结 篇2
1、掌握最基本的五种尺规作图
⑴、作一条线段等于已知线段。
⑵、作一个角等于已知角。
⑶、平分已知角。
⑷、经过一点作已知直线的垂线。
⑸、作线段的垂直平分线。
2、掌握课本中各章要求的作图题
⑴、根据条件作任意的三角形、等要素那角性、直角三角形。
⑵、根据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。
⑶、作已知图形关于一点、一条直线对称的'图形。
⑷、会作三角形的外接圆、内切圆。
⑸、平分已知弧。
⑹、作两条线段的比例中项。
⑺、作正三角形、正四边形、正六边形等。
初中数学几何知识点总结 篇3
1、四边形的面积公式
⑴、S□ABCD=a·h
⑵、S菱形=1/2a·b(a、b为对角线)
⑶、S梯形=1/2(a+b)·h=m·h(m为中位线)
2、三角形的面积公式
⑴、S△=1/2·a·h
⑵、S△=1/2·P·r(P为三角形周长,r为三角形内切圆的`半径)
3、S正多边形=1/2·Pn·rn=1/2·nan·rn
4、S圆=πR2
5、S扇形=nπ=1/2LR
6、S弓形=S扇-S△
初中数学几何知识点总结 篇4
空间几何体的类型
1、多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的'公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2、旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。
高中数学知识点:几种空间几何体的结构特征
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱的面积和体积公式
S直棱柱侧面=c·h(c为底面周长,h为棱柱的高)
S直棱柱全=c·h+2S底
V棱柱=S底·h
空间几何体体积计算公式
1、长方体体积
V=abc=Sh
2、柱体体积
所有柱体
V=Sh、即柱体的体积等于它的底面积S和高h的积、
圆柱
V=πr2h、
3、棱锥
V=1/3xSh
4、圆锥
V=1/3xπr2h
5、棱台
V=1/3xh(S+(√SS)+S)
6、圆台
V=1/3xπh(r2+rr+r2)
7、球
V=4/3xπR3
初中数学几何知识点总结 篇5
一.行程问题
行程问题要点解析
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2基本题型:已知路程(相遇问题、追击问题)、时间(相遇时间、追击时间)、速度(速度和、速度差)中任意两个量,求出第三个量。
二、利润问题
每件商品的利润=售价-进货价毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:利息=本金×存期×利率利率的换算:
年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意与存期相一致。利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1x)b或a(1x)b
初中数学几何知识点总结 篇6
初中数学多项式的加法中考知识点
多项式和单项式一起被称为整式,整式的运算离不开加法,多项式也是如此。
多项式的加法
有限个单项式之和称为多元多项式,简称多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。
多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
F上x1,x2,…,xn的多项式全体所成的集合F[x1,x2,…,xn],对于多项式的加法和乘法成为一个环,是具有单位元素的整环。 域上的多元多项式也有因式分解惟一性定理。
关于多项式的加法计算的中考知识要领已经为大家整合出来了,请同学们相应做好笔记了。
初中数学几何知识点总结 篇7
平方根表示法:
一个非负数a的平方根记作,读作正负根号a。a叫被开方数。
中被开方数的取值范围:
被开方数a≥0
平方根性质:
①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
平方根与算术平方根区别:
1、定义不同。
2表示方法不同。
3、个数不同。
4、取值范围不同。
联系:
1、二者之间存在着从属关系。
2、存在条件相同。
3、0的算术平方根与平方根都是0
含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
求正数a的算术平方根的方法;
完全平方数类型:
①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
初中数学几何知识点总结 篇8
一.圆的定义
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二.圆心
1.定义1中的定点为圆心。
2.定义2中绕的那一端的端点为圆心。
3.圆任意两条对称轴的交点为圆心。
4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的`二分之一.d=2r或r=二分之d。
8.圆的半径或直径决定圆的大小,圆心决定圆的位置。
三.圆的基本性质
1.圆的对称性
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2.垂径定理
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5.夹在平行线间的两条弧相等。
(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。)
6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
四.圆和圆
1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。
2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。
3.两个圆有两个交点,叫做两个圆的相交。
4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。
5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。
五.正多边形和圆
1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。
2.正多边形与圆的关系:
(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。
(2)这个圆是这个正多边形的外接圆。
初中数学几何知识点总结 篇9
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
初中数学几何知识点总结 篇10
1、弧长公式
n°的圆心角所对的弧长l的计算公式为L=nπr/180
2、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.
S=﹙n/360﹚πR2=1/2×lR
3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.
一、选择题
1.(20__o珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为
A.24πcm2B.36πcm2C.12cm2D.24cm2
考点:圆柱的计算.
分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.
解答:解:圆柱的侧面积=2π×3×4=24π.
故选A.
点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.
2.(20__o广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是
A.B.C.D.
考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.
分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.
解答:解:连接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故选B.
初中数学几何知识点总结 篇11
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学几何知识点总结 篇12
一、基本知识
一、数与代数
A、数与式:
1、有理数:①整数→正整数,0,负整数;
②分数→正分数,负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:带上符号进行正常运算。
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数
无理数:无限不循环小数叫无理数,例如:π=3.1415926…
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根;0的平方根为0;负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项;②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
)
(A/B)^N=A^N/B^N
除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式:A^2-B^2=(A+B)(A-B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
解二元一次方程组的方法:代入消元法;加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y=0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图像与X轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a
,4ac-b^2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元二次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao
ta”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△B,则A+C>B+C;
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;
例如:如果A>B,则A-C>B-C;
在不等式中,如果乘以同一个正数,不等式符号不改向;
例如:如果A>B,则A*C>B*C(C>0);
在不等式中,如果乘以同一个负数,不等号改向;
例如:如果A>B,则A*C<B*C(C<0);
如果不等式乘以0,那么不等号改为等号;
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘的数就不等于0,否则不等式不成立;
3、函数
变量:因变量Y,自变量X。
在用图像表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图像:
①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。
②正比例函数Y=KX的图像是经过原点的一条直线。
③在一次函数中,当K〈0,B〈O时,则经234象限;
当K〈0,B〉0时,则经124象限;
当K〉0,B〈0时,则经134象限;
当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
二空间与图形
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱,上下底面就是N边形。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。两点之间直线最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。即:60分为1度,60秒为1分。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,180。始边继续旋转,当他又和始边重合时,所成的角叫做周角,360。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上;
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的:角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角的角平分线就是到角两边距离相等的点的集合。
性质定理:角平分线上的点到该角两边的距离相等;
判定定理:到角的两边距离相等的点在该角的角平分线上;
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
——补角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理
三角形两边的和大于第三边
16、推论
三角形两边的差小于第三边
17、三角形内角和定理:
三角形三个内角的和等于180°
18、推论1
直角三角形的两个锐角互余
19、推论2
三角形的一个外角等于和它不相邻的两个内角的和
20、推论3
三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理(
ASA):有两角和它们的夹边对应相等的
两个三角形全等
24、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS):有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1
在角的平分线上的点到这个角的两边的距离相等
28、定理2
到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、推论1
等腰三角形顶角的平分线平分底边并且垂直于底边
31、推论2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;
32、推论3
等边三角形的各角都相等,并且每一个角都等于60°
33、等腰三角形的判定定理
如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
34、等腰三角形的性质定理
等腰三角形的两个底角相等
(即等边对等角)
35、推论1
三个角都相等的三角形是等边三角形
36、推论
有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理
线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1
关于某条直线对称的两个图形是全等形
43、定理
如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3
两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理
直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理
四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理
n边形的内角的和等于(n-2)×180°
51、推论
任意多边的外角和等于360°
52、平行四边形性质定理1
平行四边形的对角相等
53、平行四边形性质定理2
平行四边形的对边相等
54、推论
夹在两条平行线间的平行线段相等
55、平行四边形性质定理3
平行四边形的对角线互相平分
56、平行四边形判定定理1
两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2
两组对边分别相等的四边
形是平行四边形
58、平行四边形判定定理3
对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4
一组对边平行相等的四边形是平行四边形
60、矩形性质定理1
矩形的四个角都是直角
61、矩形性质定理2
矩形的对角线相等
62、矩形判定定理1
有三个角是直角的四边形是矩形
63、矩形判定定理2
对角线相等的平行四边形是矩形
64、菱形性质定理1
菱形的四条边都相等
65、菱形性质定理2
菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1
四边都相等的四边形是菱形
68、菱形判定定理2
对角线互相垂直的平行四边形是菱形
69、正方形性质定理1
正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1
关于中心对称的.两个图形是全等的
72、定理2
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理
等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理
在同一底上的两个角相等的梯
形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理
如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1
经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2
经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理
三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例
87、推论
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线,
所截得的三角形的三边与原三角形三边对应成比例
90、定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1
两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2
两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3
三边对应成比例,两三角形相似(SSS)
95、定理
如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)
96、性质定理1
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2
相似三角形周长的比等于相似比
98、性质定理3
相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
(a<90)
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理
不在同一直线上的三点确定一个圆。
110、垂径定理
垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2
圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理
一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3
如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理
圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交
0<=d<r
②直线L和⊙O相切
d=r
③直线L和⊙O相离
d>r
122、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理
圆的切线垂直于经过切点的半径
124、推论1
经过圆心且垂直于切线的直线必经过切点
125、推论2
经过切点且垂直于切线的直线必经过圆心
126、切线长定理
从圆外一点引圆的两条切线相交与一点,它们的切线长相等
,圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理
弦切角等于它所夹的弧对的圆周角?
129、推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论
如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?
133、推论
从圆外一点引圆的两条割线,这一点到每条
割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离
d>R+r
②两圆外切
d=R+r
③两圆相交
R-r<d<R+r(R>r)
④两圆内切
d=R-r(R>r)
⑤两圆内含
d<R-r(R>r)
136、定理
相交两圆的连心线垂直平分两圆的公共弦
137、定理
把圆平均分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理
正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pn*rn/2
p表示正n边形的周长
142、正三角形面积√3a^2/4
a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180——》L=nR
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长=d-(R-r)
外公切线长=d-(R+r)
初中数学几何知识点总结 篇13
1.不在同一直线上的三点确定一个圆
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11.定理圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12. ①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1经过圆心且垂直于切线的直线必经过切点
16.推论2经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20. ①两圆外离 d>R+r
②两圆外切 d=R+r
③两圆相交 R-rr)
④两圆内切 d=R-r(R>r) ⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的.内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-(R-r) 外公切线长= d-(R+r)
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
初中数学几何知识点总结 篇14
本届九年级学生基础高低参差不齐,有的基础较牢,成绩较好。当然也有个别学生没有养成良好的学习习惯、行为习惯。这样要因材施教,使他们在各自原有的基础上不断发展进步。从考试情况来看:优等生占8%,学习发展生占55%。总体情况分析:学生两极分化十分严重,优等生比例偏小,学习发展生所占比例太大,其中发展生大多数对学习热情不高,不求上进。而其中的优等生大多对学习热情高,但对问题的分析能力、计算能力、概括能力存在严重的不足,尤其是所涉及的知识拓展和知识的综合能力方面不够好,学生反应能力弱。
根据以上情况分析:产生严重两极分化的主要原因是学生在学生基础太差,学习习惯差,许多学生不会进行知识的梳理,同时学生面临毕业和升学的双重压力等,致使许多学生产生了厌学心理。为了彻底解决了以上问题,应据实际情况,创新课堂教学模式,推行“自主互动”教学法,真正让学生成为课堂的主人,体验到“我上学,我快乐;我学习,我提高”。首先从培养学生的兴趣入手,分类指导,加大平日课堂的要求及其它的有力措施,平日认真备课、批改作业,做好优生优培和学习困难生转化工作。数学基本概念的教学对于学生学好数学是很重要的。在复习中,既要注意概念的科学性,又要注意概念形成的阶段性。由于概念是逐步发展的,因此要特别注意遵循循序渐进,由浅入深的原则。对于某些概念不能一次就透彻地揭示其涵义,也不应把一些初步的概念绝对化。在教学中要尽可能做到通俗易懂,通过对分析、比较、抽象、概括,使学生形成概念,并注意引导学生在学习,生活和劳动中应用学过的概念,以便不断加深对概念的理解和提高运用数学知识的能力。在平日讲课中学会对比。要在区别的基础上进行记忆,在掌握时应进行对比,抓住本质、概念特征,加以记忆。激发学生学习数学的兴趣,帮助学生形成概念,获得知识和技能,培养观察和分析推理能力,培养学生实事求是、严肃认真的科学态度和科学的学习方法。所以在复习中在加强指导和练习,加大对学生所学知识的检查,搞好今学期数学课的“单元综合课”模式探索和自考工作,并做好及时的讲评和反馈学生情况。
加强课堂教学方式方法管理,把课堂时间还给学生,把学习的主动权还给学生,使课堂教学真正成为教师指导下学生自主学习、自主探究和合作交流的场所。讲全面,提倡以学定教,以学定讲,努力增强讲授的针对性、实效性,努力减少多余的讲授,不着边际的指导和毫无意义的提问,从严把握课堂学、讲、练的时间结构,根据学科特点和不同课型确定适宜讲授时间,严格控制讲授时间和价值不大的师生对话时间。
初中数学几何知识点总结 篇15
一、特殊的平行四边形:
1.矩形:
(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:
①有一个角是直角的平行四边形叫做矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:
(1)定义:邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
(3)判定定理:
①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四条边相等的四边形是菱形。
(4)面积:
3.正方形:
(1)定义:一个角是直角的菱形或邻边相等的矩形。
(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。正方形既是矩形,又是菱形。
(3)正方形判定定理:
①对角线互相垂直平分且相等的四边形是正方形;
②一组邻边相等,一个角为直角的平行四边形是正方形;
③对角线互相垂直的矩形是正方形;
④邻边相等的矩形是正方形
⑤有一个角是直角的菱形是正方形;
⑥对角线相等的菱形是正方形。
二、矩形、菱形、正方形与平行四边形、四边形之间的联系:
1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。
2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。
三、判定一个四边形是特殊四边形的步骤:
常见考法
(1)利用菱形、矩形、正方形的`性质进行边、角以及面积等计算;
(2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;
(3)一些折叠问题;
(4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。
误区提醒
(1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;
(2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;
(3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);
(4)再利用对角线长度求菱形的面积时,忘记乘;
(5)判定一个四边形是特殊的平行四边形的条件不充分。
初中数学几何知识点总结 篇16
知识点总结
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的'四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
常见考法
(1)利用平行四边形的性质,求角度、线段长、周长;
(2)求平行四边形某边的取值范围;
(3)考查一些综合计算问题;
(4)利用平行四边形性质证明角相等、线段相等和直线平行;
(5)利用判定定理证明四边形是平行四边形。
误区提醒
(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;
(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。
初中数学几何知识点总结 篇17
1、图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2、相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
初中数学几何知识点总结 篇18
顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。
中位线
中位线概念
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。
注意:
(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。
(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。
初中数学几何知识点总结 篇19
中考数学知识点:分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.
分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简.
中考数学二次根式的加减法知识点总结
二次根式的加减法
知识点1:同类二次根式
(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。
(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。
知识点2:合并同类二次根式的方法
合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。
知识点3:二次根式的加减法则
二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。
知识点4:二次根式的混合运算方法和顺序
运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。
知识点5:二次根式的加减法则与乘除法则的区别
乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。
中考数学知识点:直角三角形
★重点★解直角三角形
☆内容提要☆
一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函数值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余两角的三角函数关系:sin(90°-α)=cosα;…
4.三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2.依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理
1.俯、仰角:
2.方位角、象限角:
3.坡度:
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
初中数学几何知识点总结 篇20
1、一元二次方程解法:
(1)配方法:(X±a)2=b(b≥0)注:二次项系数必须化为1
(2)公式法:aX2+bX+C=0(a≠0)确定a,b,c的值,计算b2-4ac≥0
若b2-4ac>0则有两个不相等的实根,若b2-4ac=0则有两个相等的实根,若b2-4ac<0则无解
若b2-4ac≥0则用公式X=-b±√b2-4ac/2a注:必须化为一般形式
(3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a2-b2=0→(a+b)(a-b)=0
②运用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
③十字相乘法
2、锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c;
余弦(cos):邻边比斜边,即cosA=b/c;
正切(tan):对边比邻边,即tanA=a/b;
余切(cot):邻边比对边,即cotA=b/a;
3、积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、两角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)