作文网实用文档工作总结列表页

初一数学知识点总结

2025-10-27 04:48:09工作总结

初一数学知识点总结 篇1

  第一章整式的运算

  一、单项式、单项式的次数:

  只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  二、多项式

  1、多项式、多项式的次数、项

  几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

  三、整式:单项式和多项式统称为整式。

  四、整式的加减法:

  整式加减法的一般步骤:(1)去括号;(2)合并同类项。

  五、幂的运算性质:

  1、同底数幂的乘法:

  2、幂的乘方:

  3、积的乘方:

  4、同底数幂的除法:

  六、零指数幂和负整数指数幂:

  1、零指数幂:

  2、负整数指数幂:

  七、整式的乘除法:

  1、单项式乘以单项式:

  法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

  2、单项式乘以多项式:

  法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  3、多项式乘以多项式:

  多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  4、单项式除以单项式:

  单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

  5、多项式除以单项式:

  多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  八、整式乘法公式:

  1、平方差公式:

  2、完全平方公式:

  第二章平行线与相交线

  一、余角和补角:

  1、余角:

  定义:如果两个角的和是直角,那么称这两个角互为余角。性质:同角或等角的余角相等。2、补角:

  定义:如果两个角的和是平角,那么称这两个角互为补角。

  性质:同角或等角的补角相等。

  二、对顶角:

  我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。

  对顶角的性质:对顶角相等。

  三、同位角、内错角、同旁内角:

  直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的.两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

  四、平行线的判定:

  1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。

  2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

  3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

  补充平行线的判定方法:

  (1)平行于同一条直线的两直线平行。

  (2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。

  五、平行线的性质:

  (1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。

  六、尺规作图:

  1、作一条线段等于已知线段。2、作一个角等于已知角。

  第三章生活中的数据

  一、科学记数法:

  一般地,一个绝对值较小的数可以表示成a10的形式,其中1a10,n是负整数。

  二、近似数和有效数字:

  1、近似数:

  利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

  2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。

  三、形象统计图:

  第四章概率

  一、事件发生的可能性;

  人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。

  二、游戏是否公平:

  游戏对双方公平是指双方获胜的可能性相同。三、摸到红球的概率:1、概率的意义

  P(摸到红球=

  摸到红球可能出现的结果数

  摸出一球可能出现的结果数2、确定事件和不确定事件的概率:

  (1)必然事件发生的概率为1记作P(必然事件)=1(2)不可能事件发生的概率为0,P(不可能事件)=0(3)如果A为不确定事件,那么0

  (2)三角形按角分类:

  直角三角形(有一个角为直角的三角形)

  三角形锐角三角形(三个角都是锐角的三角形)斜三角形

  钝角三角形(有一个角为钝角的三角形)

  把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  7、三角形的三种重要线段:(1)三角形的角平分线:

  定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

  性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:

  定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。(3)三角形的高线:

  定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;

  8、三角形的面积:

  三角形的面积=

  1×底×高2二、全等图形:

  定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。三、全等三角形

  1、全等三角形及有关概念:

  能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  2、全等三角形的表示:

  全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边相等,对应角相等。4、三角形全等的判定:

  (1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

  (2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定:

  对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

  第六章变量之间的关系

  1、变量、自变量、因变量:2、函数的三种表示法:

  (1)关系式法(2)列表法

  (3)图像法

  第五章生活中的轴对称

  一、轴对称

  1、轴对称图形:

  如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2、轴对称:

  对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。

  3、性质:

  (1)对应点所连的线段被对称轴垂直平分

  (2)对应线段相等,对应角相等。

  二、角平分线的性质:

  角平分线上的点到这个角的两边的距离相等。

  三、线段的垂直平分线(简称中垂线):

  定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

  四、等腰三角形

  1、等腰三角形:有两条边相等的三角形叫做等腰三角形。

  2、等腰三角形的性质:

  (1)等腰三角形的两个底角相等

  (2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),

  (3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。

  3、等腰三角形的判定:

  (1)有两条边相等的三角形是等腰三角形。

  (2)如果一个三角形有两个角相等,那么它们所对的边也相等

  五、等边三角形:

  1、等边三角形:三边都相等的三角形叫做等边三角形。

  2、等边三角形的性质:

  (1)具有等腰三角形的所有性质。

  (2)等边三角形的各个角都相等,并且每个角都等于60°。

  3、等边三角形的判定

  (1)三边都相等的三角形是等边三角形。

  (2)三个角都相等的三角形是等边三角形

  (3)有一个角是60°的等腰三角形是等边三角形。

初一数学知识点总结 篇2

  第一章有理数

  1、大于0的数是正数。

  2、有理数分类:正有理数、0、负有理数。

  3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

  4、规定了原点,单位长度,正方向的直线称为数轴。

  5、数的大小比较:

  ①正数大于0,0大于负数,正数大于负数。

  ②两个负数比较,绝对值大的反而小。

  6、只有符号不同的两个数称互为相反数。

  7、若a+b=0,则a,b互为相反数

  8、表示数a的点到原点的距离称为数a的绝对值

  9、绝对值的三句:正数的绝对值是它本身,

  负数的绝对值是它的相反数,0的绝对值是0。

  10、有理数的计算:先算符号、再算数值。

  11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

  12、乘除:同号得正,异号的负

  13、乘方:表示n个相同因数的乘积。

  14、负数的奇次幂是负数,负数的偶次幂是正数。

  15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

  16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数)

  17、左边第一个非零的数字起,所有的数字都是有效数字。

  【知识梳理】

  1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

  2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

  3.倒数:若两个数的积等于1,则这两个数互为倒数。

  4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

  几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.

  5.科学记数法:,其中。

  6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

  7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

  一元一次方程知识点

  知识点1:等式的概念:用等号表示相等关系的式子叫做等式.

  知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.

  说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.

  知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.

  例2:如果(a+1) +45=0是一元一次方程,则a________,b________.

  分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.

  知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.

  (2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.

  即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.

  说明:等式的性质是解方程的重要依据.

  例3:下列变形正确的是( )

  A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1

  C.如果x=y,则x-5=5-y D.如果则

  分析:利用等式的性质解题.应选D.

  说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.

  知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.

  知识点6:关于移项:⑴移项实质是等式的基本性质1的运用.

  ⑵移项时,一定记住要改变所移项的符号.

  知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.

  例4:解方程 .

  分析:灵活运用一元一次方程的步骤解答本题.

  解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.

  说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.

  知识点8:方程的检验

  检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.

  注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的'左边和右边.

  三、一元一次方程的应用

  一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助.

  一、行程问题

  行程问题的基本关系:路程=速度×时间,

  速度=,时间=.

  1.相遇问题:速度和×相遇时间=路程和

  例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?

  解:设甲、乙二人t分钟后能相遇,则

  (200+300)× t =1000,

  t=2.

  答:甲、乙二人2钟后能相遇.

  2.追赶问题:速度差×追赶时间=追赶距离

  例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲? 解:设t分钟后,乙能追上甲,则

  (300-200)t=1000,

  t=10.

  答:10分钟后乙能追上甲.

  3. 航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度. 例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度.

  解:设小船在静水中的速度为v,则有

  (v+20)×3=90,

  v=10(千米/小时).

  答:小船在静水中的速度是10千米/小时.

  二、工程问题

  工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1.

  例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成?

  解:设甲再单独做x天才能完成,有

  (+)×5+=1,

  x=11.

  答:乙再单独做11天才能完成.

  三、环行问题

  环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.

  例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?

  解:设经过t分钟二人相遇,则

  (300-200)t=400,

  t=4.

  答:经过4分钟二人相遇.

  四、数字问题

  数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同.

  例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.

  解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得

  [10(x-1)+x]+[10x+(x+1)]=33,

  x=1,则x+1=2.

  ∴这个数是21.

  答:这个两位数是21.

  五、利润问题

  利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几 例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?

  解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] ,

  x=162.

  48+x=48+162=210.

  答:该电器每台进价、定价各分别是162元、210元.

  六、浓度问题

  浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度

  例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种药液4020克,则需要“84”消毒液多少克?

  解:设需要“84”消毒液x克,根据题意得

  =,

  x=20.

  答:需要“84”消毒液20克.

  七、等积变形问题

  例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)

  第9 / 11页

  分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:

  玻璃杯里倒掉的水的体积=长方体铁盒的容积.

  解:设玻璃杯中水的高度下降了xmm,根据题意,得经检验,它符合题意.

  八、利息问题

  例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%.

  (1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元.

  (2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?

  (3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少?

  分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税.

  解:(1)利息=本金×利率×期数=8500×2.2%×1=187元.

  实得利息 =利息×(1-20%)=187×0.8=149.6元.

  (2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232.

  解方程,得x=70000.

  经检验,符合题意.

  答:这笔资金为70000元.

  (3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432.

  解方程,得x=6000.

  经检验,符合题意.

  答:这笔资金为6000元.

初一数学知识点总结 篇3

  一、方程的有关概念

  1.方程:含有未知数的等式就叫做方程.

  2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

  注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

  二、等式的性质

  等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

  等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

  等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.

  四、去括号法则

  1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

  2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

  五、解方程的一般步骤

  1. 去分母(方程两边同乘各分母的最小公倍数)

  2. 去括号(按去括号法则和分配律)

  3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4. 合并(把方程化成ax = b (a≠0)形式)

  5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

  六、用方程思想解决实际问题的一般步骤

  1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

  2. 设:设未知数(可分直接设法,间接设法)

  3. 列:根据题意列方程.

  4. 解:解出所列方程.

  5. 检:检验所求的解是否符合题意.

  6. 答:写出答案(有单位要注明答案)

初一数学知识点总结 篇4

  一、一元一次不等式的解法:

  一元一次不等式的解法与一元一次方程的解法类似,其步骤为:

  1、去分母;

  2、去括号;

  3、移项;

  4、合并同类项;

  5、系数化为1

  二、不等式的基本性质:

  1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变;

  2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;

  3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

  三、不等式的解:

  能使不等式成立的未知数的值,叫做不等式的解。

  四、不等式的解集:

  一个含有未知数的不等式的所有解,组成这个不等式的解集。

  五、解不等式的依据不等式的基本性质:

  性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,

  性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,

  性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,

  常见考法

  (1)考查一元一次不等式的解法;

  (2)考查不等式的性质。

  误区提醒

  忽略不等号变向问题。

  初中数学重点知识点归纳

  有理数乘法的运算律

  1、乘法的交换律:ab=ba;

  2、乘法的结合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  单项式

  只含有数字与字母的积的代数式叫做单项式。

  注意:单项式是由系数、字母、字母的指数构成的。

  多项式

  1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

  2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

  提高数学思维的方法

  转化思维

  转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。

  创新思维

  创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解

  要培养质疑的习惯

  在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。

  在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。

  有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。

初一数学知识点总结 篇5

  一、目标与要求

  1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3.培养学生获取信息,分析问题,处理问题的能力。

  二、重点

  从实际问题中寻找相等关系;

  建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。

  三、难点

  从实际问题中寻找相等关系;

  分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。

  四、知识点、概念总结

  1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

  3.条件:一元一次方程必须同时满足4个条件:

  (1)它是等式;

  (2)分母中不含有未知数;

  (3)未知数最高次项为1;

  (4)含未知数的项的系数不为0.

  4.等式的性质:

  等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

  等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

  等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

  解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

  5.合并同类项

  (1)依据:乘法分配律

  (2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

  (3)合并时次数不变,只是系数相加减。

  6.移项

  (1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

  (2)依据:等式的性质

  (3)把方程一边某项移到另一边时,一定要变号。

  7.一元一次方程解法的一般步骤:

  使方程左右两边相等的未知数的值叫做方程的解。

  一般解法:

  (1)去分母:在方程两边都乘以各分母的最小公倍数;

  (2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

  (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

  (4)合并同类项:把方程化成ax=b(a0)的形式;

  (5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

  8.同解方程

  如果两个方程的解相同,那么这两个方程叫做同解方程。

  9.方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

初一数学知识点总结 篇6

  有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初一数学知识点总结 篇7

  一、目标与要求

  1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3.培养学生获取信息,分析问题,处理问题的能力。

  二、重点

  从实际问题中寻找相等关系;

  建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。

  三、难点

  从实际问题中寻找相等关系;

  分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。

  四、知识点、概念总结

  1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

  3.条件:一元一次方程必须同时满足4个条件:

  (1)它是等式;

  (2)分母中不含有未知数;

  (3)未知数最高次项为1;

  (4)含未知数的项的系数不为0.

  4.等式的性质:

  等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

  等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

  等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

  解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

  5.合并同类项

  (1)依据:乘法分配律

  (2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

  (3)合并时次数不变,只是系数相加减。

  6.移项

  (1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

  (2)依据:等式的性质

  (3)把方程一边某项移到另一边时,一定要变号。

  7.一元一次方程解法的一般步骤:

  使方程左右两边相等的未知数的值叫做方程的解。

  一般解法:

  (1)去分母:在方程两边都乘以各分母的最小公倍数;

  (2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

  (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

  (4)合并同类项:把方程化成ax=b(a0)的形式;

  (5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

  8.同解方程

  如果两个方程的解相同,那么这两个方程叫做同解方程。

  9.方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

  由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!

初一数学知识点总结 篇8

  一、平面解析几何的基本思想和主要问题

  平面解析几何是用代数的方法研究几何问题的一门数学学科,其基本思想就是用代数的方法研究几何问题。例如,用直线的方程可以研究直线的性质,用两条直线的方程可以研究这两条直线的位置关系等。

  平面解析几何研究的问题主要有两类:一是根据已知条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质。

  二、直线坐标系和直角坐标系

  直线坐标系,也就是数轴,它有三个要素:原点、度量单位和方向。如果让一个实数与数轴上坐标为的点对应,那么就可以在实数集与数轴上的点集之间建立一一对应关系。

  点与实数对应,则称点的坐标为,记作,如点坐标为,则记作;点坐标为,则记为。

  直角坐标系是由两条互相垂直且有公共原点的数轴组成,两条数轴的度量单位一般相同,但有时也可以不同,两个数轴的交点是直角坐标系的原点。在平面直角坐标系中,有序实数对构成的集合与坐标平面内的点集具有一一对应关系。

  一个点的坐标是这样求得的,由点向轴及轴作垂线,在两坐标轴上形成正投影,在轴上的正投影所对应的值为点的'横坐标,在轴上的正投影所对应的值为点的纵坐标。

  在学习这两种坐标系时,要注意用类比的方法。例如,平面直角坐标系是二维坐标系,它有两个坐标轴,每个点的坐标需用两个实数(即一对有序实数)来表示,而直线坐标系是一维坐标系,它只有一个坐标轴,每个点的坐标只需用一个实数来表示。

  三、向量的有关概念和公式

  如果数轴上的任意一点沿着轴的正向或负向移动到另一个点,则说点在轴上作了一次位移。位移是一个既有大小又有方向的量,通常叫做位移向量,简称向量,记作。如果点移动的方向与数轴的正方向相同,则向量为正,否则为负。线段的长叫做向量的长度,记作。向量的长度连同表示其方向的正负号叫做向量的坐标(或数量),用表示。这里同学们要分清,三个符号的含义。

  对于数轴上任意三点,都有成立。该等式左边表示在数轴上点向点作一次位移,等式右边表示点先向点作一次位移,再由点向点作一次位移,它们的最终结果是相同的。

  向量的坐标公式(或数量公式),它表示向量的数量等于终点的坐标减去起点的坐标,这个公式非常重要。

  有相等坐标的两个向量相等,看做同一个向量;反之,两个相等向量坐标必相等。

  注意:①相等的所有向量看做一个整体,作为同一向量,都等于以原点为起点,坐标与这所有向量相等的那个向量。②向量与数轴上的实数(或点)是一一对应的,零向量即原点。

  四、两点的距离公式和中点公式

  1、对于数轴上的两点,设它们的坐标分别为,则的距离为,的中点的坐标为。

  由于表示数轴上两点与的距离,所以在解一些简单的含绝对值的方程或不等式时,常借助于数形结合思想,将问题转化为数轴上的距离问题加以解决。例如,解方程时,可以将问题看作在数轴上求一点,使它到,的距离之和等于。

  2、对于直角坐标系中的两点,设它们的坐标分别为,则两点的距离为,的中点的坐标满足。

  两点的距离公式和中点公式是解析几何中最基本、最常用的公式之一,要求同学们能熟练掌握并能灵活运用。

  五、坐标法

  坐标法是数学中一种重要的数学思想方法,它是借助于坐标系来研究几何图形的一种方法,是数形结合的典范。这种方法是在平面上建立直角坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标所满足的方程表示曲线,通过研究方程,间接地来研究曲线的性质。

初一数学知识点总结 篇9

  本学期,我担任七年级数学教学工作。在一学期的实际教学中,我按照教学大纲的要求,结合本校的实际条件和学生的实际情况,全面实施素质教育,努力提高自身的业务水平和教学能力,为了克服不足,总结经验,使今后的工作更上一层楼,现对本学期教学工作作出如下总结:

  一、认真备课。

  备课时,我结合教材的内容和学生的实际精心设计每一堂课的教学过程,不但要考虑知识的相互联系,而且拟定采用的教学方法,以及各教学环节的自然衔接;既要突出本节课的难点,又要突破本节课的重点。认真写好教案和教后感。

  二、认真上课。

  为了提高教学质量,体现新的育人理念,把"知识与技能,过程与方法,情感态度与价值观"的教学目标真正实施在实际的课堂教学之中。课堂教学以人为本,注重精讲多练,特别注意调动学生的积极性,强化他们探究合作意识。对于每一节课新知的学习,我通过联系现实生活,让学生们在生活中感知数学,学习数学,运用数学;通过小组交流活动,让学生在探究合作中动手操作,掌握方法,体验成功等。鼓励学习大胆质疑,注重每一个层次的学生学习需求和学习能力。从而,把课堂还给了学生,使学生成了学习的主人。

  三、认真批改作业。

  对于学生作业的布置,我本着“因人而异,适中适量的”原则进行合理安排,既要使作业有基础性,针对性,综合性,又要考虑学生的不同实际,突出层次性,坚决不做毫无意义的作业。学生的每次作业批改及时,认真并做到了面批面改。个别错题,当面讲解,出错率在50%以上的,我认真作出分析,并进行集体讲评。

  四、认真做好后进行转化工作。

  本班49名学生中,学习中下者将近占一半,所以"抓差补阙"工作认真尤为重要。本学期,我除了在课堂上多照顾他们外,课后还给他们“开小灶”。首先,我通过和他们主动谈心,了解了他们家庭状况,经济基础,邻里关系等,找出了其中的原因,并从心理上疏导他们,拉近了我们师生之间的距离,使他们建立了自信心;其次,对他们进行了辅导。对于他们遗漏的知识,我主动为他们弥补,对于新学内容,我耐心为他们讲解,并让他们每天为自己制定一个目标,同时我还对他们的点滴进步及时给予鼓励表扬。通过一学期“时间,地点,内容,人物,措施”五落实的辅导工作,激发了他们的求知欲和上进心,使他们对数学产生了兴趣,也取得了较好的成绩。

  总之,一学期的教学工作,既有成功的喜悦,也有失败的困惑,虽然取得了一定的成绩,但也存在不少的缺点。本人今后将在教学工作中,汲取别人的长处,弥补自己的不足,力争取得更好的成绩。

初一数学知识点总结 篇10

  1、有序数对

  有顺序的两个数a与b组成的数对,叫做有序数对。

  2、平面直角坐标系

  平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

  平面上的任意一点都可以用一个有序数对来表示。

  建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

  3、坐标方法的简单应用

  用坐标表示地理位置

  利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:

  ⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

  ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

  ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  4、用坐标表示平移

  在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x—a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y—b))。

  在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

初一数学知识点总结 篇11

  平面直角坐标系

  1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

  2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

  3.原点的坐标是(0,0);

  纵坐标相同的点的连线平行于x轴;

  横坐标相同的点的连线平行于y轴;

  x轴上的点的纵坐标为0,表示为(x,0);

  y轴上的点的横坐标为0,表示为(0,y)。

  4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

  5.几个象限内点的特点:

  第一象限(+,+);第二象限(—,+);

  第三象限(—,—);第四象限(+,—)。

  6.(x,y)关于原点对称的点是(—x,—y);

  (x,y)关于x轴对称的点是(x,—y);

  (x,y)关于y轴对称的点是(—x,y)。

  7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;

  点P(x,y)到y轴的距离是︱x︳。

  8.在第一、三象限角平分线上的点的坐标是(m,m);

  在第二、四象限叫平分线上的点的坐标是(m,—m)。

  不等式与不等式组

  (1)不等式

  用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

  (2)不等式的性质

  ①对称性;

  ②传递性;

  ③加法单调性,即同向不等式可加性;

  ④乘法单调性;

  ⑤同向正值不等式可乘性;

  ⑥正值不等式可乘方;

  ⑦正值不等式可开方;

  (3)一元一次不等式

  用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

  (4)一元一次不等式组

  一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

  点、线、面、体知识点

  1.几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  2.点动成线,线动成面,面动成体。

  点、直线、射线和线段的表示

  在几何里,我们常用字母表示图形。

  一个点可以用一个大写字母表示。

  一条直线可以用一个小写字母表示。

  一条射线可以用端点和射线上另一点来表示。

  一条线段可用它的端点的两个大写字母来表示。

  注意:

  (1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

  (2)直线和射线无长度,线段有长度。

  (3)直线无端点,射线有一个端点,线段有两个端点。

  (4)点和直线的位置关系有线面两种:

  ①点在直线上,或者说直线经过这个点。

  ②点在直线外,或者说直线不经过这个点。

  角的种类

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。

初一数学知识点总结 篇12

  历经一学期的努力学习和探索,应该说有了进步,在教学效果方面,全体学生都有了不同程度的提高和发展,不同的学生都能形成比较适合自己的数学学习的方式。

  一、充分认识理解数学课程理念和思想

  定位于面向全体,以大面积提高合格率为努力方向,有效地发展学生的数学能力,挖掘他们的潜力。这一学期的最大变化就是师生关系的转变,师生之间基本上形成了和谐融洽的民主关系,上课时的气氛比较以前更活跃,学生能在学习数学的过程中体验快乐与成就感,大部分学生基本养成了良好的自主习惯。

  二、按照数学课程的要求组织上课,并不排斥数学课中的强化训练

  我们初一(1)的数学成绩有进步,初一(2)的数学成绩也不错.我们为这个成果的获取付出了大量的劳动和反复的探索,学生的基础差是客观现实,从另个角度来说,基础差也说明发展的空间大,只要方法得当,使学生产生学习兴趣,不排斥数学课堂,那么,发展只是程度的问题了。

  我们按照估计的学生总体的平均接受水平来设计课堂,以单元检测为评价和反馈方式,采取引导激励尝试提高的结构评价,每次检测时,以第一次检查时结果为学生的标准起点,让学习还不是很扎实的同学,准备3~5天,然后再进行补偿检查,这样,在心理上消除了学生对检测的恐惧,激发起学生不服输的愿望,和别人比较,和自己的过去比较,学生不再厌烦第二次检测,而是向往和急切期盼,从而达到了我们的预期效果。本学期我们遵循数学课思想理念,循序渐进,发展学生的独立探究能力,在动手、动口、动脑中完善自我。利用合作学习将自我的感受和体验加以交流,在辨析中揭示知识的.内在规律和寻找最佳的学习方式。在疑难问题上,学生能够各抒己见,登台讲解,思路开阔,提高了能力,淡化了纯粹的记忆。

  在课堂教学中,我们初一重视实践操作能力,让学生在课堂上、课下动手制作教具、学具,变抽象为具体,然后再从具体中抽象,实现了形象思维和抽象思维的合理更迭。重视数学阅读。在阅读中实现读听说写思的协调一致,特别是讨论条件的联合思维使学生保证了阅读时思考,条件记忆和结论分析的有机统一。苏霍姆林斯基说过:“只有把记忆的努力和思考的努力结合起来,只有在对周围世界的现象和规律性深入思考时,才可能有真正的智力发展”,读是训练这种结合的有效途径。

  总之,这一学期的课改实践努力,我们收获了不少,但也有许多不足,如后进生转化一直比较缓慢,过程性评价缺乏必要的现实环境、学生厌学的现象还不同程度的存在,随着学生认知的变化,课堂组织的模式也要不断的更新的有关探索还不是很到位等等,我们将在以后的实践中,创造性的继续探索、解决。

初一数学知识点总结 篇13

  本学期我担任初一年级的数学教学工作。学生由小学升入中学,根据学生的实际情况,本学期我努力采取有效的措施,激发学生的学习兴趣,培养学生的学习习惯,引导学生参与学习的全过程,取得了一定效果。就本学期的教学工作,作出如下总结。

  一、以课堂教学为核心:

  1、备课。学期初,钻研了《数学课程标准》、教材、教参,对学期教学内容做到心中有数。学期中,着重进行单元备课,掌握每一部分知识在单元中、在整册书中的地位、作用。思考学生怎样学,学生将会产生什么疑难,该怎样解决。在备课本中体现教师的引导,学生的主动学习过程。充分理解课后习题的作用,设计好练习。

  2、上课。

  (1)创设各种情境,激发学生思考。然后,放手让学生探究,动手、动口、动眼、动脑。针对教学重、难点,选择学生的探究结果,学生进行比较、交流、讨论,从中掌握知识,培养能力。接着,学生练习不同坡度,不同层次的题目,巩固知识,形成能力,发展思维。最后,尽量让学生自己小结学到的知识以及方法。现在学生普遍对数学课感兴趣,参与性高,为学好数学迈出了第一步。

  (2)及时复习。根据爱宾浩斯遗忘规律,新知识的遗忘随时间的延长而减慢。因此,我的做法是:新授知识基本是当天复习或第二天复习,以后再逐渐延长复习时间。这项

  措施非常适合后进学生遗忘快、不会复习的特点。(3)努力构建知识网络。一般做到一小节一整理,形成每节知识串;每单元整理复习形成知识链,一学期对整册书进行整理复习。学生经历了教材由“薄”变“厚”,再变“薄”的过程,既形成了知识网,又学到了方法,容易产生学习迁移,给学生的创新、实践提供了可能。

  3、批改作业。针对不同的练习错误,教师面批,指出个性问题,集体订正共性问题。批改作业时,教师点出错题,不指明错处,让学生自己查找错误,增强学生的分析能力。学生订正之后,仍给满分,鼓励学生独立作业的习惯,对激发学习的兴趣取得了较好效果。分析练习产生错误的原因,改进教学,提高教师教学的针对性。

  4、注重对后进生的辅导。对后进生分层次要求。在教学中注意降低难度、放缓坡度,允许他们采用自己的方法慢速度学习。注重他们的学习过程。在教学中逐步培养他们的学习兴趣,提高他们的学习自信心,对学生的回答采取“扬弃”的态度,从而打破了上课发言死气沉沉的局面,使学生敢于回答问题,乐于思考。

  5、做好测试评估工作。评估不只是看学生学习成绩如何,更重要的是了解学生学习的心理,作为教师改进教学的依据。在测试卷中,增加了体现学生思维过程的试题。测试的结果也不再作为评价学生唯一依据,而是看重学生的知识掌握情况,学习的努力程度。在评讲试卷时,打破按顺序逐题讲解的模式,尝试采

  用按类讲解。如:将试卷中有关概念的归为一类进行讲解。希望通过这一改变,能让学生从不同角度掌握、运用知识。

  二、积极落实素质教育

  坚持正确的教育思想,树立与素质教育相适应的教学观念,改变“以知识为本”的传统认识,树立“以学生发展为本”的新观念,紧紧围绕学生的探索与创新活动展开,呈现出“乐、实、活、新”的教学情境,使学生能保持良好的心境,始终以一种轻松、愉快的心情去积极主动的参与学习。

  三、参加教研活动:

  1、改变教育观念。明确教育是为学生今后的发展服务的。阅读教育期刊,思考培养学生创新意识、实践能力的方法和途径。

  2、虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,多听优秀老师的课,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。

  创造各种适宜的、开放的情境,逐步培养学生的创新意识、能力和实践能力,明确方向,促进教学。

  一份耕耘,一份收获,付出就会有收获。不过,我也清醒地认识到工作中存在的不足之处,教学工作苦乐相伴,我将一如既往勤勉、务实地工作,争取把工作做得更好。

初一数学知识点总结 篇14

  这学期,我继续担任的是初一年级3,4班数学教学。一学期来能认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,形成比较完整的知识结构,严格要求学生,尊重学生,使学生学有所得,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。

  1、课前做好准备工作,认真备课

  除认真钻研数学课标和教材外,还深入了解学生,注意了解每个学生的知识水平、智力水平和个性心理品质,考虑影响学生学习的各种因素,并研究相应对策。把教材和学生实际很好地结合起来,设计课的类型,拟定采用的教学方法,安排详细的.教学过程的程序,认真写好教案。每堂课都在课前做好充分的准备,吸引学生注意力,课后及时做出总结,写好教学后记。

  2、课堂上好课,提高教学质量

  组织好课堂教学,这是顺利进行正常教学的保证。根据初中学生的年龄特征,特别是低年级学生的注意力容易分散,注意的集中是相对的,分散是绝对的,因此,把组织教学贯穿于全部教学过程之中。其次,根据学生的不同情况,设计不同的问题,采用不同的方式,主动积极的去引导、启发学生,注意调动学生的积极性,面向全体学生,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得轻松,学得愉快,注意精讲精练,并进行有针对性,切合实际的个别辅导,这对于提高教学质量起到一定作用的。

  3、认真批改作业

  作业的选取有针对性,有层次性,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题分类总结,然后进行评讲,并针对有关情况及时改进教学方法,做到有的放矢。

  4、课后积极主动的辅导后进生,努力提高教学质量

  初一学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业。针对这种问题,抓好学生的思想教育,并使这一工作贯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,加强了对后进生的辅导,耐心地帮助他们,一方面解决了学习中产生的问题,补了基础,教了方法,更重要的是增强了他们的信心,提高了他们的兴趣,对他们精神上是一个很大的激励,从而产生强烈的学习动机,不断地提高学习水平。

  5、积极参与听课、评课,虚心向同行学习教学方法,提高教学水平

  主动积极与同备课老师同事交流,共同探究教育教学。积极参与学校公开周公开课教学,这学期除听本校老师的课外,还到雷甸中学等学校听课,学习别人的优点,克服自己的不足,改进教学工作,提高教学水平。

  6、继续学习,不断扩宽知识面,提高业务水平

  认真学习新教育教学的理念,以新课改的思想理念指导教学,推进新课程改革的深入开展。

  这学年来能认真执行学校教育教学工作计划,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。但教学过程中存在不足:3班学习成绩两极分化;部分男生基础较差,产生厌学,作业有抄袭。在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,转化不足,开拓前进,为美好的明天贡献自己的力量。<

初一数学知识点总结 篇15

  第一章行列式

  知识点1:行列式、逆序数

  知识点2:余子式、代数余子式

  知识点3:行列式的性质

  知识点4:行列式按一行(列)展开公式

  知识点5:计算行列式的方法

  知识点6:克拉默法则

  第二章矩阵

  知识点7:矩阵的概念、线性运算及运算律

  知识点8:矩阵的乘法运算及运算律

  知识点9:计算方阵的幂

  知识点10:转置矩阵及运算律

  知识点11:伴随矩阵及其性质

  知识点12:逆矩阵及运算律

  知识点13:矩阵可逆的判断

  知识点14:方阵的行列式运算及特殊类型的.矩阵的运算

  知识点15:矩阵方程的求解

  知识点16:初等变换的概念及其应用

  知识点17:初等方阵的概念

  知识点18:初等变换与初等方阵的关系

  知识点19:等价矩阵的概念与判断

  知识点20:矩阵的子式与最高阶非零子式

  知识点21:矩阵的秩的概念与判断

  知识点22:矩阵的秩的性质与定理

  知识点23:分块矩阵的概念与运算、特殊分块阵的运算

  知识点24:矩阵分块在解题中的技巧举例

  第三章向量

  知识点25:向量的概念及运算

  知识点26:向量的线性组合与线性表示

  知识点27:向量组之间的线性表示及等价

  知识点28:向量组线性相关与线性无关的概念

  知识点29:线性表示与线性相关性的关系

  知识点30:线性相关性的判别法

  知识点31:向量组的最大线性无关组和向量组的秩的概念

  知识点32:矩阵的秩与向量组的秩的关系

  知识点33:求向量组的最大无关组

  知识点34:有关向量组的定理的综合运用

  知识点35:内积的概念及性质

  知识点36:正交向量组正交阵及其性质

  知识点37:向量组的正交规范化、施密特正交化方法

  知识点38:向量空间(数一)

  知识点39:基变换与过渡矩阵(数一)

  知识点40:基变换下的坐标变换(数一)

  第四章 线性方程组

  知识点41:齐次线性方程组解的性质与结构

  知识点42:非齐次方程组解的性质及结构

  知识点43:非齐次线性线性方程组解的各种情形

  知识点44:用初等行变换求解线性方程组

  知识点45:线性方程组的公共解、同解

  知识点46:方程组、矩阵方程与矩阵的乘法运算的关系

  知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例

  第五章矩阵的特征值与特征向量

  知识点48:特征值与特征向量的概念与性质

  知识点49:特征值和特征向量的求解

  知识点50:相似矩阵的概念及性质

  知识点51:矩阵的相似对角化

  知识点52:实对称矩阵的相似对角化.

  知识点53:利用相似对角化求矩阵和矩阵的幂

  第六章二次型

  知识点54:二次型及其矩阵表示

  知识点55:矩阵的合同

  知识点56 : 矩阵的等价、相似与合同的关系

  知识点57:二次型的标准形

  知识点58:用正交变换化二次型为标准形

  知识点59:用配方法化二次型为标准形

  知识点60:正定二次型的概念及判断

初一数学知识点总结 篇16

  忙碌的一学期即将结束,在这个学期中,我们初一数学备课组,在教研组的领导下,有计划、有步骤的开展各项工作,取得了一定的成绩。总的来说,我们是在扎实做好常规教学的基础上,围绕如何在课程教学中体现新理念,注重情感、态度、价值观的培养;如何激发学生学数学用数学的兴趣;如何引导学生发现问题、探索猜想、分析论证;如何既要重视学习结果,更要重视学习过程,使学生在学习基本知识和基本技能的过程中学会学习;如何在教学中大胆创新,大面积提高教学质量等等来开展工作。我们发挥集体智慧,群策群力,积极探索。较好地完成了初一级的数学教学任务。

  现将一学期的工作简单回顾如下:

  一、深入学习新课程标准,钻研新教材

  坚持学习新课程标准、钻研新教材,互相交流学习体会;发辉集体的智慧,进行集体备课;统一教学进度,统一各章节的重点、难点、制定难点的突破教法,探讨交流教学上的问题,每次活动大家都能畅所欲言,达到了取长补短、相互促进、共同进步的目的。

  二、落实分层作业,改变教学策略

  “先学后教,以学定教,多学少教,精练少讲”这是我们老师提出的教学要求,也是每个教师积极努力的方向。于是我们数学备课组积极探索适合自己学生的教学模式,在每节新课前十五分钟,都会引导学生结合校本作业中的导读提纲和导读练习(导读练习来源于书上例题或课后练习)来完成自我学习的过程,老师结合完成情况来决定讲授时间的多少,如果完成的不理想,说明同学问题和困难比较多,因此老师会根据困难部分来详细分析,当然,这并不是一成不变的授课模式,我们还会结合县区分层作业的基础练习,也来作为导读练习来帮助同学完全掌握基础知识点。

  三、扎实开展工作,分享教学经验

  总的来说,本学期我们是在扎实做好常规教学的基础上,围绕如何如何激发学生学数学用数学的兴趣;如何弓导学生在学习基本知识和基本技能的过程中学会学习;如何在教学中大面积提高教学质量等等来开展工作。我们发挥集体智慧,群策群力,积极探索。较好地完成了初一年级的数学教学任务,虽然在这个学期,我们做了一些工作,但离新课程的要求还有很大距离,教研课的开展还不够到位,例如:针对本校学情教法是否得当,重点难点是否突破,“课堂45钟教学”是否提高了有效性,教学思想、方法的渗透等等。我们教学经验的总结还是停留在初级阶段,教育教学的能力还存在不足之处,教师的教学技能还有待于提高,老师集体备课的质还有待加强,要想改变这个现状,我们全组老师还要继续努力,不断进取。

初一数学知识点总结 篇17

  就在星期四,我们班正在数学考试,一个个同学都低头做着题,认真地思考,,我也不例外。但是,当做完了卷子,同学们都在仔仔细细地检查时,而我却没有检查,认为这些题十分简单,自己不会做错。就即使错了,也不会错太多,所以没有检查。

  然而回报我的分数却是80+19分,这个分数给了我一个沉重的打击,让我当时脑袋就一下蒙住了,这是我有以来从未考过的最低分数。当时我心里十二分的后悔,而且十分不好意思,真是,要是地面上有一道缝隙的话,我一定躲进去不出来。

  这次考试,我没有考好,都还是因为那不好的老毛玻在考试时总是粗心大意,计算又要算错,算对了呢,在卷子上又写成其它数,读题的时候不认真读,老是把厘米看成分米,不换数学单位等等都是我的几大毛玻可是就一个一样的原因—我不去检查。

  我,就是因为不去检查,才将已经做完了卷子得到了现在的这个分数。检查,它能帮助我们把之前做了的题检查一遍,把自己做错了的题找出来,然后再看看自己是错在了哪里,又应该如何去改错,去让自己的分数更高,更可能拿到100+20分的好成绩。所以,从今天起,我不管做什么样的作业,都要仔细认真地去做,最后还要认真地区检查一次,让自己的正确率更高一些,让自己的学习成绩更进一步。

  细心地检查可以给我们许许多多的帮助,让我考得更好。只要我们通过自己的努力,付出的越多,那么得到的回报也就越多,让我们一起加油吧!

初一数学知识点总结 篇18

  《除法的初步认识》是在学生已初步了解乘法的意义,会用2—6的乘法口诀计算表内乘法的基础上学习的。这一课时的主要目标是使学生通过实际操作,经历从“任意分”到“平均分”的过程,了解平均分的含义,能根据要求把一些具体物品平均分,并知道每份是多少。通过本课教学,有以下几点体会。

  1、在操作活动中学习数学

  二年级的小学生,喜欢动手是他们的天性,具体形象思维是他们认知的特点。数学活动中的操作既可以激发学生参与数学活动的兴趣,更重要的是帮助学生体验、理解数学的知识。比如通过学生分小棒来理解“平均分”,这样做学生既动手又动脑,在操作中探索规律,建立概念,这样将兴趣激发,思维训练,能力培养融为一体,使知识充满内在活力,充分为学生提供体验经历探索的过程,并敢于把自己想法、做法展现给大家。

  2、创设问题情境,提高学习兴趣

  这节课的教学,我从学生的生活实际出发,展示给大家10个又红又大的苹果,分给两个小朋友,问有几种分法,然后又提出:要使两个小朋友分得同样多,应怎样分?用小棒来代替苹果分一分吧!学生们很愿意动手来分,这样做,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。

  总之,这节课较好地完成了教学任务,学生们在操作的基础上,充分理解了平均分。但整节课显得过于平淡,学生的语言表达能力也有待于进一步提高,在今后的教学中,应注意对学生的这方面的能力培养,多多采用激励性的语言,提高学生们的学习兴趣,培养他们的语言表达能力。

初一数学知识点总结 篇19

  尽快地掌握科学知识,迅速提高学习能力,由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!

  一、目标与要求

  1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3.培养学生获取信息,分析问题,处理问题的能力。

  二、重点

  从实际问题中寻找相等关系;

  建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。

  三、难点

  从实际问题中寻找相等关系;

  分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。

  四、知识点、概念总结

  1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

  3.条件:一元一次方程必须同时满足4个条件:

  (1)它是等式;

  (2)分母中不含有未知数;

  (3)未知数最高次项为1;

  (4)含未知数的项的系数不为0.

  4.等式的性质:

  等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

  等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

  等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

  解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

  5.合并同类项

  (1)依据:乘法分配律

  (2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

  (3)合并时次数不变,只是系数相加减。

  6.移项

  (1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

  (2)依据:等式的性质

  (3)把方程一边某项移到另一边时,一定要变号。

  7.一元一次方程解法的一般步骤:

  使方程左右两边相等的未知数的值叫做方程的解。

  一般解法:

  (1)去分母:在方程两边都乘以各分母的最小公倍数;

  (2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

  (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

  (4)合并同类项:把方程化成ax=b(a0)的形式;

  (5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

  8.同解方程

  如果两个方程的解相同,那么这两个方程叫做同解方程。

  9.方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

  由编辑老师为您提供的初一年级新学期数学知识点,希望给您带来启发!

初一数学知识点总结 篇20

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2.三角形的分类

  3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7.高线、中线、角平分线的意义和做法

  8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9.三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余;

  推论2三角形的一个外角等于和它不相邻的两个内角和;

  推论3三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的内角和是外角和的一半。

  10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11.三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  13.多边形的内角:多边形相邻两边组成的角叫做它的内角。

  14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  19.公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  20.多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  21.多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

  (2)n边形共有n(n-3)/2条对角线。

猜你喜欢